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1 Introduction

During this reporting period we have worked on three somewhat different

problems. These are modeling of video traffic in packet networks, low rate

video compression and the development of a lossy + lossless image compres-

sion algorithm, which might ha, re some application in browsing algorithms.

The lossy + lossless scheme is an extension of work previously done under

this grant, it provides a. simple technique for incorporating browsing capa-

bility. The low rate coding scheme is also a simple variation on the standard

DCT coding approach. In spite of its simplicity the approach provides sur-

prisingly high quality reconstructions. The modeling approach is borrowed

fl'om the speech recognition literature, and seems to be promising in that it

provides a simple way of obtaining an idea. about the second order behav-

ior of a particular coding scheme. Details about these are presented in the

following sections.

2 Lossy+Lossless Compression

Lossless compression of images consist of two steps; a decorrelation step in

which the redundancies within the image are exploited to reduce the first

order entropy of the image, and a coding step in which variable length codes

are used to provide coding rates close to the entropy. The second step has

been very well studied with the development of coding scheme for sources

with known statistics, such as the Huffman codes [1] and Arithmetic codes.

More recently universal coding schemes such as the Rice algorithm [2] have

been developed for coding sources with unknown statistics. The problem

of decorrelation is not that well studied, and to date the best decorrelation

strategies have been predictive techniques.

The recently proposed JPEG still compression standard [3] uses predictive

techniques to decorrelate the image. It provides eight different predictive

schemes from which the user can select. Table 1 lists the eight predictors.

The first scheme makes no prediction. The next three are one-dimensional

predictors and the last four are two-dimensional 1)rediction schemes.

Sayood and Anderson [4] propose a switched prediction scheme which has

static ordering and replacement functions and a backward adaptive neigh-

borhood function. They scan the image in raster order, predicting the value



Mode Prediction for P[i,j]

0 (No Prediction)

P[i- 1,j]

P[i,j- 1]

P[i- 1,j- 1]

P[i,j - 1] + P[i,j - 1]- P[i- 1,j - 1]
P[i,j - 1] + (P[i,j - 1]- P[i- 1,j - 1])/2

P[i- 1,j] + (P[i- 1,j] - eli- 1,j - 1])/2
(P[i,j - 1] + P[i- 1,j])/2

Table 1: JPEG Predictors for lossless coding

of the current pixel by using a reference pixel (say, the left neighbor). If the

prediction error exceeds a certain threshold then the reference pixel for the

next pixel is switched (say, to the top neighbor). The scheme is very simple

and can be implemented efficiently in hardwa.re.

Another simple but perhaps more effective technique, named MAP (Me-

dian Adaptive Prediction), is given by Martucci [5]. Here, the median of a

set of predictions is chosen as the prediction that is used to form the pre-

diction error. Simulations were reported using the median of the following

three predictors

1. P[i,j- 1]

2. P[i- 1,j]

3. P[i,j- 1] + P[i- 1,j- 1]- P[i- 1,j- 1]

Results obtained were an improvement over any of the three predictors taken

individually. The reason for this is that the median adaptive predictor would

always choose either the best or the second best predictor among the candi-

date predictors.

Given the success of lossy image compression techniques at generating an

excellent visual approximation of an image at very low bit rates, the following

scheme seems a natural candidate:

• First generate a low bit rate representation of the image by some lossy

technique.



• Use this low bit rate approximation to decorrelate the image by forming

a residual which represents the difference between the original image

and the low rate approximation.

Such schemes are called Lossy phLs Lossless schemes.

In order to reconstruct the image from the residual, the receiver would

need to first have the low rate approximation. So one can see that in effect we

have a decorrelation technique with a forward adaptive replacement function.

Techniques that use a discrete cosine transform based lossy step have been

investigated in [6]. Using the Walsh-Hadamard transform and S-transform

in the lossy step was investigated in [7]. Also, investigated in the same study

was Subband Coding using the Smith and Barnwell Filter as well as the

Quadrature Mirror Filter for getting a low bit rate approximation of the

image. Manohar and Tilton [8] give a Vector Quantization based lossy plus

lossless technique. They get improved performance by iterating this process

again on the residual by using a special codebook for the residual image.

They report best performance for three such iterations.

One advantage of lossy plus lossless techniques is that they provide the

user with a ]ow rate approximation of an image, based on which the decision

for viewing the exact image can be made. This is generally called browsin 9

capabilit 9. It finds applications in situations where the user may have to

scan through a large database of images in order to find a specific image of

interest. The disadvantage is that the final bit-rate is generally higher than

the bit rate that would have been obtained if the image had been losslessly

coded directly, instead of first going through the lossy encoding step [9].

Although a variety of schemes exist for image decorrelation, very few com-

parative studies have been reported in literature. A performance comparison

of some of the schemes listed above is given in [7] for medical images. It

was concluded in this study that the HINT scheme was more effective then

the other schemes studied. However, in [9], it was observed that predictive

techniques out perform other techniques.

In this work, we shall take the JPEG still image compression standard

[3] as a basis for comparison. We do so because our experience has shown

the scheme to be quite robust and yields superior performance over a wide

range of images. \¥e have chosen a set of test images (given in appendix 1)

on w]_ich the eJg]?t different predictors listed by JPEG u,ere tried. Table 2

lists the entropy of the residual image for the test images.



hnage JPEG JPEG JPEG JPEG JPEG JPEG JPEG JPEG
0 1 2 3 4 5 6 7

USE-Girl 6.42 5.05 5.10 5.40 ,5.07 4.90 4,9:3 4.82
Girl 6.49 4.2,5 4.37 4.65 4.68 4.68 4.7,5 4.,53

-Lady 5.:37 :3.83 4.16 4.31 4.09 3.81 4.02 3.84

House 6.54 4.64 5.06 5.35 4,58 4.46 4.64 4.64

Couple ,5.96 4.67 4.49 5.11 4.36 4.38 4.27 4.41

Tree 7.21 5.63 5.9:3 6.04 ,5.74 5.49 5.66 5.51

Satellite 7.31 6.15 6.39 6.5,5 6.09 5.90 6.01 5.89

Table 2: Entropy of error image using JPEG predictors

In our technique we used a lossy compression scheme developed under a

grant from the Goddard Space Flight Center (NAG 5-916). The details of

the lossy scheme is described in a recently published paper [10], a copy of

which is included. The heart of this scheme is a recursively indexed qua ntizer

[4] which maps a large (possibly countahly infinite) set into a small finite set.

This means that the entropy coding that is to be performed can be done

on a small alphabet, which can result in substantial savings in hardware

complexity. In our implementation the size of the output alphabet varied

from three to nine. This can be contrasted with the JPEG lossless scheme

where the size of the input alphabet of the entropy coder (output alphabet

of the decorrelation scheme) is 511 (this could be reduced to 256 by being

somewhat clever about how to store the residuals).

The scheme works as follows: the Edge Preserving DPCM (EPDPCM)

scheme is first used to encode the image at some required fidelity level. If

a lossless version is then required the difference between the reconstructed

image and the original is then transmitted to the receiver. One of the attrac-

tive features of the EPDPCM scheme is that the reconstruction error can be

strictly limited to within a predetermined limit. Thus, we could encode the

image so that the error is confined to the least significant bit, or the least

m significant bits. This rnakes the lossless step very simple. Depending on

the fidelity of the lossy step, we could use m. bits, without the need for any

further entropy coding.

We tried a. variety of predictors in the EPDPCM scheme. The two that



Image

USC-Girl

Girl

Lady

House

USC-Couple

Tree

Satellite

A=2

Lossy Lossless

3.93 1

3.91 1

3.14 1

3.75 1

3.61 1

5.22 1

5.49 1

Table 3: Rates for the Lossy

Total Lossy

4.93 2.84

4.91 2.84

4.14 2.17

4.75 2.74

4.61 2.57

6.22 3.74

6.49 3.95

+ Lossless Scheme

A=4

Lossless

2

2

2

2

2

2

2

Total Lossy

4.84 1.95

4.84 1.97

4.17 1.52

4.74 1.92

4.57 1.73

5.74 2.79

5.95 2.94

Using the Harrison Predictor

A=8

Lossless

3

3

3

3

3

3

3

Total

4.95

4.97

4.52

4.92

4.73

5.79

5.94

gave the best results were a predictor clue to Harrison [11], and variation of

the MAP predictor [5]. The Harrison predictor is of the form _P(i,j - 1) +

- l P(i - 1 j - 1). The results are shown in Table 3._P(i- 1,j) _ ,

In these simulations we used a nine level recursively indexed quantizer.

The best results seem to occur for a step size (A) of four. The final lossless

performance is within .3 bits of the best JPEG lossless scheme in each case.

For the USC-Girl and Satellite images, the lossy+lossless scheme actually

perforrns as well as the .JPEG schemes.

\¥e also simulated the median adaptive predictor with one slight modi-

fication. In the published form the MAP has infinite memory. This makes

it unsuitable for use in lossy schemes, as the quantization error will tend to

propagate. We therefore multiplied the prediction with a prediction coeffi-

cient of 0.85. This makes the predictor leaky and allows the effect of the

errors to die out over thne. The results are presented in Table 4

As the MAP predictions are somewhat better than the predictions fi'om

the Harrison predictor we used a three level recursively indexed quantizer

for all but the Tree image. The best results in these simulations seem to be

obtained when A has a value of two( except for the Satellite inaage). Notice

that in this case the 1)erformance for some of the images is actually better

than the performance of the JPEG lossless scheme.

We have presented a simple Lossy + Lossless compression scheme which

compares favorably with existing schemes in terms of the bit rate. However,



Image
USC-Girl
Girl
Lady
House

USC-Couple

Tree

Satellite

A=2

Lossy Lossless Total

3.51 1 4.51

3.41 1 4.41

3.38 1 4.38

3.60 1 4.60

3.40 1 4.40

5.67 1 6.67

5.26 1 6.26

Table 4: Rates for the Lossy

Predictor

£X=4

Lossy Lossless

2.60 2

2.70 2

2.69 2

2.81 2

2.49 2

4.47 2

3.82 2

+ Lossless Scheme Using

Total Lossy

4.60 1.93

4.70 2.12

4.69 2.06

4.81 2.14

4.49 1.79

6.47 3.36

5.82 2.74

the Median Adaptive

A=8

Lossless

3

3

3

3

3

3

3

Total

4.93

5.12

5.06

5.14

4.79

6.36

5.74

to be truly competitive, the first lossy pass should have a significantly lower

bit rate, to accomodate quick previews. This could be done by subsampling

the image first and providing a coded version of the subsampled image to the

user. We are currently working on this problem.

3 Low Rate Video Coding

Xiaomei \Vang

Transform coding is a widely accepted method for image and video com-

pression. The basic motivation behind transform coding is to remove the

source redundancy by decomposing the input signal into components in the

frequency or transform domain, i.e. translate a set of data into another set

of less correlated or more independent coefficients. Of particular interest to

image processing and image coding standards is the two dimensional dis-

crete cosine transform. The DCT provides a good match to the optimum

(covariance-diagonalizing or Karhunen-Loeve) transform for most image sig-

nals and fast algorithm exist for computing the DCT.

Traditionally as well as for convenience it is assumed that all of the im-

portant coefficients are packed into a specific area of the transform domain,

this is called the "energy compaction" effect of the cosine transform. The

amount of compression depends upon the number of coefficients retained in



-4 11 -5

4 2 -5

-5 -7 5

-8 -7 3

1 -3 0

-6 -4 -6

8 -2 -1

0 -1 -6

Table 5:

-S -8 -1 9 -7

-5 1 -4 -8 2

-3 0 4 -2 2

-3 4 6 -8 -14

-3 3 2 -2 -5

5 -6 -5 -9 7

-6 3 5 6 2

-3 0 -8 -8 3

Block of difference image

this area.. Usually the low frequency area is considered more important than

the high frequency area. For this reason image data is often compressed by

coding and then traasmitting only the low-frequency components. But this

assumption is not always true.

Another possibility is to put a threshold on the transformed coefficient

magnitude and set all coefficients with magnitudes below the threshold to

zero. This approach is more realistic because we do not assume any fixed

important area. but consider this area dynamic, depending on the character-

istics of images. This is a more complex coding strategy but it results in

a very high compression rate while maintaining better picture quality, i.e.

more details and less block effect, compared to coding and transmitting only

the low frequency components.

In the following we describe a threshold transform coding scheme which

incorporates DPCM and runlength coding. The motion picture sequence

used for testing is that of a woman talking on the phone. This is one of the

standard sequences used by the MPEG committee.

In Figure 1 we show one of the frames from this sequence. The difference

image between the current frame and the quantized version of last frame is

shown in Figure 2. We will divide this image into N by N sub-blocks and

process each block separately. Let us take a look at a randomly chosen 8x8

block shown in Table 5.

After the cosine transform the coefficients are shown in Table 6

We can see that the there is no obvious energy compaction for this block

and comparatively larger values are scattered around the block. We can see



-3.0 -0.1 O0 1.0 0.0 -1.4 0.8 0.2

-0.3 0.5 -0.2 0.3 -2.9 -0.2 -0.8 0.0

0.4 0.4 4.0 -0.1 -0.1 -0.5 -2.7 -0.3

0.3 -0.0 1.7 -0.1 -O.S 0.6 -2.1 -1.4

-1.3 1.2 -1.3 1.0 -2.1 -0.0 -1.3 0.4

0.8 -0.9 -1.0 1.3 -3.1 1.2 0.1 0.6

-1.3 -1.2 -0.2 -2.9 0.0 0.2 -0.2 -1.5

2.3 -0.7 1.2 1.1 -1.4 0.9 0.1 1.4

Table 6: DCT coefficients

-3.0 0.0 0.0 0.0 0.0 I0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 I 0.0 0.0 0.0

0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 -3.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7: Coefficients with threshold = 3

this more clearly by using the threshold strategy. We choose a threshold t as

a positive number and compare each coefficient in the transform domain with

the threshold. If the magnitude of the coefficient is less than the threshold,

we set it to zero; if it is larger than or equal to the threshold, we retain it

without change.

With t = 3, we get the block in Table 7.

We can see there are only three non-zero coefficients left, not all of them

are in the low frequency area. However, in spite of tile fact that we have only

three of the original sixty four coefficients left we will see that after the inverse

transform we can still get a very good looking picture. The image in Figure 3

was reconstructed after zeroing out all coefficients with a magnitude less than



three. As can be seen this is a very good reproduction of the original image

with only 3 of the original data.. The reconstructed image with threshold =

5 is shown in Figure 4.

The setting of the threshold depends upon the compression as well as

the picture quality we need. The amount of compression can be somehow

indicated by the number of non-zero coefficients left. The number of non-zero

coefficients as a function of the threshold is shown in Figure 5. As to the

picture quality, after doing the inverse cosine transform and DPCM decoding

we compare the image with the original and compute the PSNR. The PSNR

as a function of the threshold is shown in Figure 6.

To transfer the block of coefficients we first linearize the two dimensional

block along a zig-zag scanning path as shown in Figure 7 and get the sequence

of data containing ahnost all zeros except for a few non-zero data. We will

use run length coding and Huffman code for such data.

The non-zero coefficients are quantized. The quantizer is designed based

on the probability distribution of data. We show the relative distribution

of frame 25 in Figure 8. Here we choose threshold t = 5_ so the center of

x-coordinate is +5 or -5. The distribution of data from the other frames is

similar.

We design our quantizer based on this distribution however as there are

variations from frame to frame, we choose to have more output levels in

case these are needed in some other frames. Since we use Huffman code for

the quantizer outputs, the bit rate will not increase much because of more

quantizer outputs. The Huffman code we use for non- zero coefficients is in

Table 8.

The relative distribution of runs and the Huffman code designed for the

runs is shown in Table 9

In order to reduce the number of bits we will not count the last zero run

of each block. In order to do this we need a symbol for either the beginning

or the end of the block. \¥e will count the number of runs of each block and

send it as the header of each block. The relative probability distribution of

number of runs of each block is shown in table 10, again we use an entropy

code for coding efficiency.
Because the distribution of each frame varies, there is no need to design

Huffman code exactly according to one frame. The code in the table is

comparatively ea_sy and efficient.

Using the above methods the final bit rate for frame 2,5 is about 0.24



Table 8:

Number of Outputs
0
1
2
3
4

Code

63:340 No Code

1272 1

763 01

115 001

42 0001

4 00001

0 0000016

7 0 0000001

8 0 00000001

Quantizer outputs statistics and Huffman codes

Run Length Number of Runs Code

0 233.000000

1 1651.000000 0

2 477.000000 110

184.000000

1110 (;15)

1001

4 151.000000 1000

5 120.000000 10111

6 94.000000 10101

7 77.000000 111111

8 73.000000 111110

9 62.000000 111101

10 50.000000 101001

11 61.000000 111100

12 52.000000 101100

13 44.000000 101000

14 35.000000 1011011

15 18.000000 1011010

Table 9: Relative distribution of runs and Huffman codes

10



Numberof Coefficients Occurrence Code
0 445 1

i lSa o_
2 lO6 OOl

4 83 0001

5 70 00001

5 _7 000001
6 37 0000001

7 30 00000001

8 11 000000001

§ 12 0000000001

10 3 00000000001

11 4 000000000001

12 2 0000000000001

is o 00000000000001
'14 1 000000000000001

Table 10: Distribution of number of coefficients in ea,ch block and a trivial

entropy code

11



(bits/pixel). The reconstructed image after coding is shown in Figure 9.

Using the same code for other frames the bit rate varies a little but not too

much.

We have described a simple easy to implement low rate video coding

scheme. To keep the algorithm simple we have not used any motion com-

pensation or more complicated quantization techniques. The thresholding

operation can be made simpler if we chose the threshold to be a power of

two. In this case the thresholding would simply consist of shifting the least

significant bits out.

4 Using Hidden Markov Model as Video Source

Output Model

Yun-Chung Chen

4.1 Introduction

Variable bit rate coding scheme will be implemented in ATM networks in or-

der to obtain flexibility and efficiency. This is important because the output

bit rate stream of a video source depends on the specific scene contents and

coding scheme used. Also, different types of video sources will have different

statistical characteristics, and different bit rates. Thus it would be inefficient

to use fixed rate coding schemes. In this project we examine the CCITT

H.261 coding scheme which is a proposed standard for video-telephony or

single-activity motion scenes. We are interested in how to transmit the coded

video information across ATM networks efficiently. Performance sinmlations

are very important when designing a coding scheme which will hopefully best

fit into the future ATM environment. Efficient and accurate simulations de-

pend on accurate modeling. Unfortunately, the modeling of video sources is

more complicated than the voice source model like Modulated Markov Pois-

son Process(MMPP) [12]. The use of continuous state autoregressive pro-

cesses used for video source modeling usually generates significant difficulties

in any analytical analysis. Maglaris et. al. [13] develop a discrete state, con-

tinuous time Markov process to simplify the analysis. In this project, we use

the concept of Hidden Markov Models(HMM) to simulate the variable output

rate of a. video source. Whenever the analytical analysis is impossible, we

12



hope to get some insight about the performance from the simulation. Even

when the analytical analysis is possible, we can have a comparison tool. We

show that the HMM as a video source output model can accurately reflect

atleast the second order video output statistics.

4.2 Problem Setup

An HMM is characterized by the following:

1. N, the number of states in the model.

2. M, the number of distinct observation symbols per state.

3. A = {aij}, the state transition p,'obability distribution.

4. B = {bj(k)}, the observation symbol probability distribution.

5. _, = {7:,i}, the initial state distribution.

Most video source models developed have used the fl'ame as a unit when

modeling the output sequence [13]. Considering the data structure used in

the H.261 coding algorithm, we decided to use a macroblock (16 x 16 pixels)

as our unit simply because the coding algorithm adopts different quantization

strategies for every macroblock. H.261 changes the step size of quantizer

depending on the buffer fullness. If the buffer is full, coarse quantization

will produce less output and release the tight condition of buffer. Using the

quantization mode as the state in the HMM seems to be a natural choice. We

hope this choice can accurately reflect the bit rate distribution in different

quantization modes. As a test sequence we used the Susie sequence, which is

one of the standards h'om MPEG. We developed an H.261 simulator and used

frames 46-55 of the Susie sequence. The choice of these 10 frames is based

on the consideration of covering the states, symbols and state transitions

adequately. Using these ten frames gave us 2.560 output bit rates. Through

the coding simulation of these ten frames, the quantization step travels back

and forth in the set:(8,16,24,32,40,48,56). Each qua ntization step denotes a

state in our model, therefore N equals 7. The coder generates a zero output

when dealing with a motionless macroblock, and when the bufffer is full. So,

0 is assigned as a distinct symbol. The observation symbols are the output

of the quantizer. We use an eight level quantizer so M equals eight.

13



0.800000 0.200000 0.000000 0.000000 0.000000 0.000000 0.000000

0.100000 0.800000 0.100000 0.000000 0.000000 0.000000 0.000000

0.000000 0.100000 0.800000 0.100000 0.000000 0.000000 0.000000

0.000000 0.000000 0.100000 0.800000 0.100000 0.000000 0.000000

0.000000 0.000000 0.000000 0.100000 0.800000 0.100000 0.000000

0.000000 0.000000 0.000000 0.000000 0.100000 0.800000 0.100000

0.000000 0.000000 0.000000 0.000000 0.000000 0.200000 0.800000

Table 11: Initial condition A.opt for the transition probability matrix

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.14.857

0.142857

0.142857

0.1428.57

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

0.142857

O. 142857

Table 12: Initial condition A.uni for the transition probability matrix

There are several possible ways of initializing the algorithm used for de-

veloping the Hidden Markov Model. These depend on the selection of the

initial state transition matrix A, the matrix of observation symbol proba-

bility distributions B, and the initial state probability distribution re. The

different initial values of these matrices used in this work are shown in Ta-

ble 11 to Table 16. Eight different combinations of these initial parameters

were used to run the optimization. *.uni is nniform distribution for A, B

and rc matrix. A.opt is the approximate form we think the A matrix should

take since one can only travel between neighboring states. B.opt is actually

calculated from the H.261 simulation, therefore we can comfortably assume

it is optimal. The initial state probability matrix rr.opt is obviously correct

since we start the simulation with an empty buffer.

14



0.160000 0.240000 0.080000 0.120000 0.080000 0.040000 0.040000 0.240000
0.155555 0.133333 0.266666 0.222222 0.133333 0.044444 0.022222 0.022222

0.187214 0.109589 0.420091 0.178082 0.082191 0.013698 0.004556 0.004556

0.277456 0.057803 0.421905 0.173410 0.052023 0.005780 0.005780 0.005780

0.223034 0.113528 0.451553 0.138939 0.027422 0.020109 0.003656 0.000000

0.225769 0.125427 0.461104 0.114025 0.041049 0.022805 0.004561 0.000000

0.154302 0.528189 0.062314 0.050445 0.016320 0.001483 0.0000000.186943

Table 13: Initial condition B.opt for the observation probability matrix

0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000

0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000

0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000

0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000

0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000 0.125000

0.125000

0.125000

0.125000

0.125000

0.125000

0.125000

0.125000

0.125000

Table 14: Initial condition B.uni for the

0.125000

0.125000

0.125000

0.125000

observation probability

0.125000

0.125000

matrix

0.125000

0.125000

II.OOOOOOtO.OOOOOOlO.OOOOOOlO.OOOOOOlO.OOOOOOlO.OOOOOO)O.OOOOOOl
Table 15: Initial condition 7c.opt t"o1"the initial probability matrix

10.14285710.14285710.142857 0.14285710.14285710.14285710.142857 I

Table 16: Initial condition rr.opt for the initial probability matrix
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0.971572 0.028428 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.723474 0.221840 0.006125 0.047594 0.000935 0.000044

0.000000 0.0746i9 0.880526 0.044584 0.000242 0.000000 0.000000

0.000000 0.004280 0.108101 0.869359 0.000116 0.001380 0.016837

0.000000 0.000000 0.000000 0.290687 0.705150 0.003746 0.000020

0.000000 0.000000 0.000000 0.000000 0.080689 0.858148 0.061029

0.000000 0.000000 0.095528 0.904163

Table 17: Amatrix a.t 29th iteration using A.opt B.opt and re.opt

0.000000 0.000000 0.000000

0.272096 0.255770 0.106084 0.113691 0.056853 0.000000 0.024947 0.170560

0.009124 0.000000 0.085811 0.399809 0.325566 0.129653 0.040775 0.009262

0.008507

0.897719

0.014575

0.129088

0.101437

0.638788

0.760925

0.000844

0.346638

0.101409

0.000000

0.000000

0.000071

0.000000

0.000000

0.174790

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000 0.026007 0.4367:30 0.361496 0.000000 0.000977 0.000000

0.021606 0.154724 0.814827 0.000000 0.000000 0.000000 0.008843 0.000000

Table 18: B matrix at, 29th iteration using A.opt B.opt and re.opt

4.3 Discussion

Contrary to our expectations, using A.opt, B.opt and re.opt as initial pa-

rameters didn't generate the optimal solution. Instead, the combination of

A.uni, B.opt and rr.uni produced the highest score P(olA). This is not that

surprising if we consider that A.opt actually is not optimal. Some sample

values of A, B, and re are shown in Tables 17 through 22.

Because of the length of the sequence (2560) used in the optimization pro-

cedure, we ran into the problem of underflow. We used a scaling algorithm to

correct most of the effects of the underflow. However, this was not sufficient,

and some elements in the B and re matrix sometimes got very small and

went to zero during the simulation. This caused problems, as computation

of the path metric requires the computation of logarithms of the probabili-

ties. Therefore, whenever some number is got very small, we artificially set

16



1.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

Table 19: rc matrix at 29th iteration using A.opt B.opt and 7r.opt

0.596075 0.231178 0.002032 0.000074 0.008604 0.029235 0.132831

0.112090 0.531015 0.034520 0.013038 0.003539 0.003081 0.302962

0.005984 0.294194 0.518999 0.072965 0.000175 0.000119 0.108050

0.004642 0.012775 0.079244 0.823574 0.023301 0.056420 0.000001

0.000661 0.063367 0.003103 0.446239 0.405644 0.003523 0.077228

0.000006 0.021556 0.038011 0.104896 0.138746 0.150711 0.546299

0.013463 0.067384 0.220619 0.000094 0.026825 0.143878 0.527727

Table 20: A matrix at 136th iteration using A.uni B.opt and _.opt

0.000000 0.000000 0.000000 0.140243 0.506068 0.229788 0.072147 0.051754

0.012791 0.013442 0.317190 0.565088 0.091490 0.000000 0.000000 0.000000

0.000000 0.050092 0.949505 0.000402 0.000000 0.000000 0.000000 0.000000

0.976901 0.023099 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000

0.280123 0.719769 0.000108 0.000000 0.000000 0.000000 0.000000 0.000000

0.061535 0.928222 0.010243 0.000000 0.000000 0.000000 0.000000 0.000000

0.003591 0.092106 0.895200 0.000791 0.000000 0.003086 0.005225 0.000000

Table 21: B matrix at. 136th iteration using A.uni, B.opt, and _r.uni
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1.000000

O.OO0OO0

0.000000

0.000000

0.000000

0.000000

0.000000

Table 22: 7r matrix at 136th iteration using A.uni, B.opt, and rr.uni

it to a constant(10-a°°). This probably would not affect the optimal path

tracking because these small numbers are in the range of 10 -l°° and the paths

using these small number would not be selected anyway. But it does affect

the reestimation procedure slightly, in that the probability distribution won't

sum up exactly to 1.

The optimal B matrix we get is not very close to bmax.opt which is

actually observed from the experiment. But it still reflects the fact that

coarse quantization is more likely to produce small output. The average

value ff over all 10 frames and the standard deviation c_ were found to be

# = 26.05 bits/macroblock and cr = 22.98 bits/rnacroblock. Using HMM, we

generate a output sequence with # = 26.44 bits/macroblock and cr = 21.99

bits/macroblock, which is pleasantly close to our original data. Furthermore,
we calculated the autocorrelation

E[,\(t)A(t+
c(o) c(o)

r = 1, 9 ...,256

Although the values are not close for both sequences, they appear to have

almost the same shape (Figures 10 and 11). It is nice to notice the model

generates similar correlation structure as the H.261 output since variance

and covariance values usually dominate the queuing behavior. It should be

noted that we are mostly interested in the correlation behavior for small

lags, as these values are used in the queuing analysis. The 10 frame sequence

from S_Lsie generates a lot of motion, as the woman is shaking her head.

For those frames without this much motion, quantization step won't go that

high. It means the hidden Markov Model developed here for the high-motion

18



sequenceprobably is not suited for a still sequence.Adopting the idea from
MMPP, we can developanother hidden Markov model with different rnean
and variancefor motionlesssequence.And then build anotherMarkov chain
to changethe models(high/low motion) alternatively in the simulation.
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Figure 1.

Original image from the Susie sequence (frame 25)



Figure 2.

Difference image
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Figure 3.

Reconstructed image with threshold = 3 (no coding)
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Figure 4.

Reconstructed image with threshold = 5 (no coding)



Figure 5.

Avg. number of DCT coeff, vs Threshold
Avg. number of DCT coeff.
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Figure 6.

PSNR (dB)
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Figure 7.

Zig-zag scanning pattern

0 --->-- 1 5 _ 6 14 ---_ 15 27 ---_ 28

///////
2 4 7 13 16 26 29 42

I/////I/_
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///////
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i///////_
i0 19 23 32 39 45 52 54

///////
20 22 33 38 46 51 55 60

_///////_
21 34 37 47 50 56 59 61

///////
35 _ 36 48 --*-- 49 57 _ 58 62 _ 63



Figure 8.

Distribution of coefficients with threshold = 5
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Figure 9.

Reconstructed image with coding rate 0.24 bpp



Figure 10.

Autocorrelation of H.261 Output
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Figure 11.

Autocorrelation of Model Output
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Appendix

Test Images
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Figure 0.1 Clockwise from top left to bottom left 1) USC-Girl 2) Girl 3) Lady 4)

House
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Figure 0.2: Clockwise from top left to bottom left 1) USC-Couple 2) Tree 3)

Satellite
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An Edge Preserving Differential Image Coding

Scheme

Martin C. Rost and Khalid Sayood

Abstract--Differential encoding techniques are fast and easy to im-
plement. However, a major problem with the use of differential encod-

ing for images is the rapid edge degradation encountered when using
such systems. This makes differential encoding techniques of limited i

utility especially when coding medical or scientific images, where edge
preservation is of utmost importance. We present a simple, easy to
implement differential image coding system with excellent edge pres-
ervation properties. The coding system can be used over variable rate
channels which makes it especially attractive for use in the packet net-
work environment.

I. INTRODUCTION

The transmission and storage of digital images requires an enor-

mous expenditure of resources, necessitating the use of compres-

sion techniques. These techniques include relatively low complex-

ity predictive techniques such as adaptive differential pulse code

modulation (ADPCM) and its variations, as well as relatively higher

complexity techniques such as transform coding and vector quan-

tization [1], [2]. Most compression schemes were originally de-

veloped for speech and their application to images is at times prob-

lematic. This is especially true of the low complexity predictive

techniques. A good example of this is the highly popular ADPCM

scheme. Originally designed for speech [31, it has been used with

other sources with varying degrees of success. A major problem

Manuscript received January 18, 1990; revised April 28, 1991. This work
was supported by the NASA Goddard Space Flight Center under Grant
NAG-5-916.

M. C. Rost is with Sandia National Laboratories, Albuquerque, NM
87185.

K. Sayood is with the Department of Electrical Engineering and the Cen-
ter for Communication and Information Science, University of Nebraska,
Lincoln, NE 68588-0511.

]EEE Log Number 9106076.

with its use in image coding is the rapid degradation in quality

whenever an edge is encountered. Edges are perceptually very im-

portant, and therefore, their degradation can be perceptually very

annoying. If the images under consideration contain medical or sci-

entific data, the problem becomes even more important, as edges

provide position intk_rmation which may be crucial to the viewer.

This poor edge reconstruction quality has been a major factor in

preventing ADPCM from becoming as popular for image coding

as it is for speech coding. While good edge reconstruction capa-

bility is an important requirement for image coding schemes, an-

other requirement that is gaining in importance with the prolifera-

tion of packet switched networks is the ability to encode the image

at different rates. In a packet switched network, the available chan-

nel capacity is not a fixed quantity, but rather fluctuates as a func-

tion of the load on the network. The compression scheme must,

therefore, be capable of taking advantage of increased capacity

when it becomes available while providing graceful degradation

when the rate decreases to match decreased available capacity.

In this paper we describe a DPCM-based coding scheme which

has the desired properties listed above. It is a low complexity

scheme with excellent edge preservation in the reconstructed im-

age. It takes full advantage of the available channel capacity pro-

viding lossless compression when sufficient capacity is available,

and very graceful degradation when a reduction in rate is required.

11. NOTATION AND PROBLEM FORMULATION

The DPCM system consists of two main blocks, the quantizer

and the predictor (see Fig. 1). The predictor uses the correlation

between samples of the wavefornl s(k) to predict the next sample

value. This predicted value is removed from the waveform at the

transmitter and reintroduced at the receiver. The prediction error

is quantized to one of a finite number of values which is coded and

transmitted to the receiver and is denoted by e_(k). The difference

between the prediction error and the quantized prediction error is

called the quantization error or the quantization noise. If the chan-

nel is error free, the reconstruction error at the receiver is simply

the quantization error. To see this, note (Fig. 1) that the prediction

error e(k) is given by

e(k) =- s(k) - p(k) ( 1)

1057-7149f92503.00 !_? 1992 IEEE
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with time. The actual change can be accommodated by changing

the stepsize and reducing the lossless encoder codebook size by the

same amount. Several of the systems proposed above were simu-

lated. The results of these simulations are presented in the next

section.

IV. RESULTS

Before we provide the results using images, let us examine the

performance of the scheme when applied to a one-dimensional sig-

nal containing a simulated edge. This signal was first encoded us-

ing a five-level quantizcr. The results are shown in Fig. 3(a). As

can be seen, it takes a little while for the DPCM system to catch

up. In an image this would cause a smearing of the edge, When

the proposed system with the same parameters is used there is no

such effect, as is clear from Fig. 3(b). The quantizer in this case

went into the recursive mode twice, once at the leading and once

at the trailing edge. To get an equivalent effect, a standard DPCM

system would have to have a forty-level quantizer. To show that

this peflbrmance is maintained when the system is used with two-

dimensional images, two systems of the type described in the pre-

vious section have been simulated. Both systems use the following

two-dimensional fixed predictor 171: p(k) = 2/3_(k - 1) + 2/3,_(k

- 256) - 1/3d(k - 257). One of the systems contains the lossless

encoder followed by a mnlength encoder while the other contains

only the lossless encoder without thc mnlength encoder. The test

images used were the USC GIRL image, and the USC COUPLE

image. Both are 256 by 256 monochrome 8-b images and have been

used often as test images. The objective performance measures were

the peak signal-to-noise ratio (PSNR) and the mean absolute error

(MAE) which are defined as follows:

255-'
PSNR = 10 logf0

( (s(k)) - ._(k) 2)

MAE = { Is(k) - g(k) J )

where ( • ) denotes the average value.

Several initial test runs were performed using a different number

of levels, different values ofxt, and different values of A to get a

feel for the optimum values of the various parameters (given x_. and

A xH is automatically determined). We found that an appropriate

way of selecting the value of xl. was using the relationship

N-l]X I = -- _ A

where _xj is the largest integer less than or equal to x, and N is'

the size of the alphabet of the Iossless coder. This provides a sym-

metric codebook when the alphabet size is odd, and a codebook

skewed to the positive side when the alphabet size is even. The

zero value is always in the codebook.

As the alphabet size is usually not a power of two, the binary

code for the output alphabet will be a variable length code. The

use of variable length codes always bring up issues of robustness

with respect to changing input statistics. With this in mind, the rate

was calculated in two different ways. The first was to find the out-

put entropy, and scale it up by the ratio of symbols transmitted to

the number of pixels encoded. We call this rate the entropy rate,

which is the minimum rate obtainable if we assume the output of

the lossless encoder to be memoryless, While this assumption is

not necessarily true, the entropy rate gives us an idea about the best

we can do with a particular system. We also calculated the rate

using a predetermined variable length code. This code was de-

signed with no prior knowledge of the probabilities of the different

letters. The only assumption was that the letters representing the

inner levels of the quantizer were always more likely than the let-
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Fig. 3. Coding of simulated one-dimensional edge with (a) DPCM, (b)

proposed system.

ters representing the outer levels of the quantizer. The code tree

used is shown in Fig. 4. Obviously, this will become highly inef-

ficient in the case of small alphabet size and small _, as in this

case, the outer levels xt_ and x H will occur quite frequently. This

rate can be viewed as an upper bound on the achievable rate.

The results for the system without the runlength encoder are
shown in Tables I and II. Table I contains the results for the COU-

PLE image, while Table II contains the results for the GIRL image.

In the table Rc denotes the entropy rate while Re is the rate obtained

using the Huffman code of Fig. 4. Recall that for image compres-

sion schemes, systems with PSNR values of greater than 35 dB are

perceptually almost identical. As can be seen from the PSNR val-

ues in the tables there is very little degradation with rate, and in

fact, if we use the 35-dB criterion, there is almost no degradation

in image quality until the rate drops below 2 b/pixel. This can be

verified by the reconstructed images shown in Fig. 5. Each picture
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(a)

Fig. 5(a), GIRL image coded at entropy rate of 1,5 bpp. (b) GIRl. image
coded at entrop5 rate of 1.3 bpp.

in Fig. 5 consists of the original imagc, the reconstructed imagc

and the error image magnified 10 fold, In each of the pictures, it

is extremely difficult to tell the source or original image from the

reconstructed or output image. This subjective observation is sup-

ported by the error images in each case which are uniform in tex-

ture throughout without the edge artifacts which can be usually

seen in the error images for most compression schemes.

We can see from the results that if the value of A and hence, xt

is fixed, the size of the codebook has no effect on the performance

measures. This is because the only effect of reducing the codebook

size under these conditions is to increase the number of symbols

transmitted. While this has the effect of increasing the rate. because

of the way the system is constructed it does not influence the re-

suiting distortion. The drop in rate for the same distortion as thc

alphabet size increases can be clearly seen from the results in Ta-
bles I and II.

Table III and Table IV show the decrease in rate when a simple

runlength coder is used. The runlength coder encodes long strings

ofxL and xn using the special sequences mentioned previously. As

can be seen from the results the improvement provided by the cur-

rent runlength encoding scheme is significant only lbr small alpha-

bets and small values of...4. This is because it is under these con-

ditions that most of the king strings of xL and x_t are generated.

However, 'dee arc not as yet using many of the special sequences in

the larger alphabet codcbooks, so thcre is certainly room for ina-

provcment.

Finally to show the effect of changing rate on the perceptual

quality, the USC GIRL image was cncoded using three different

rates. The top quartcr of the image was encoded using a codebook

size of eight and a _ of two resulting in a rate of 4.37 b/pixel.

The second quarter of the image was encoded using a codebook of

sizc five and a 3, of 4 resulting in a rate of 2.86 b/pixel. The

bottom half of the image was encoded using a codebook size of

three and _ of eight resulting in a rate of 2.36 b/pixel. The original

and reconstructed images are shown in Fig. 6. The fact that the

image is coded with three different rates can only be noticed if the

viewer is already aware of this fact and then only after very close

scrutiny. The fact that the image was encoded using three different

rates is clear in the magnified error image shown in Fig. 7. This

property of the coding scheme would be extremely useful if changes

in the transmission bandwidth forced the coder to operate at differ-

ent rates.

To see how this algorithm performs on a relative scale, we com-

pare it to the differential scheme proposed by Maragos, Shafer, and

Mcrsereau [8]. The system proposed by Maragos et al. uses a for-

ward adaptive two-dimensional predictor and a backward adaptive
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Fig. 7. Error image for GIRL image coded at three dillerent rates.

TABLE V

COMPARISON OF PROPOS_) SYsr_,t WITH TH,vr OF [8]

Results from 181 Results l'mm

(Frame Size = 32, 3 Proposed S),stem

Level AQB) (Alphabet Size 51

Rate PSNR Rate PSNR

0.74 30.3 0,74 31.13

0.83 31.6 0,g4 32.1

0.93 32.6 0.94 33. I

1.03 33,4 I ,(I3 33.9

quantizer. The coefficients arc obtained over a 32 by 32 or a 16 by

16 block and transmitted as side information. The proposed system

(we feel) is considerably simpler, because of the lack of any need

for adaptation and side information; however, the results compare

favorably with the system of [81. Comparative results arc shown in

Table V. The results were obtained by varying the stcpsize A until

the rate obtained was similar to the rate in 18], and then comparing

the PSNR. As in I81. to obtain rates below I b/pixcl, several coder

outputs were concatenated into blocks which were then Huffman

encoded. For the results shown in Table V, we used a block size

of three. Given a five-level recursive quaatizer, this corresponds to

an alphabet size of 125, which would be somewhat excessive for a

simple implementation. (In [81 block sizes of four to eight are used

with two- and three-level quantizers.)

The above comparison is not meant to indicate that the two sys-

tems being compared are exclusive. A case can be made for com-

bining the good features of both systems, For example, the predic-

tion scheme described in [8] could be combined with the

quantization scheme described here. However, it was felt in this

particular case that the advantages to be gained by the addition of

a forward adaptive predictor were offset by the increase in com-

plexity and synchronization requirements.

V. CONCLUSION

Wc have demonstrated a simple image coding scheme which is

very' easy to implement in real time and has excellent edge pres-

ervation properties over a wide range of rates,

This system would be especially useful in transmitting images

over channels were the available bandwidth may be vary'. The edge

preserving quality is especially useful in the encoding of scientific

and medical images.

REFERENCES

] I] N. S. Jayant and P. Noll, Digital Coding o]'14'avefi_rms. Englewood
Cliffs, NJ: Prentice-Hall. 1984.

[2] A. K. Jain, "Image data compression: A review," Proc. lEE& vol.

69. pp. 349-389, Mar. t981.

[3] C. C. Cutler. "Differential quantization tk_r communication signals,"

U.S. Patent 2 605 361, July 29. 1952.

141 J. D. Gibson, "Backward adaptive prediction as spectral analysis

within a closed loop,'" IEEE Trans. Acoust,, Speech, Signal Process-
lets, vol. ASSP-33, pp. 1166-1174, Oct. 1985.

15} K. Sayood and S. M. Scheka)l, "Use of ARMA predictors in the dif-

ferential encoding of images." IEEE Trans'. ,4coust. Speech, Sienal

Processing. vol. ASSP-36, pp. 1791 1795, Nov. 1988.

161 S. M. Schekall and K. Sayood. "'An edge preserving DPCM scheme

tk',r image coding," Proc. 31st Midwest Syrup. Circuits Systems, St.

Louis. pp. 904-907, Aug. 1988.

171 C. W. Harrison. "Experiments with linear prediction in television,"

Bell Syst. Tech. J., vol. 31. pp. 764-783, July 1952.

181 P. A. Maragos, R. W. Schaler. and R. M. Mersereau, "Two-dimen-

sional linear prediction and its application to adaptive predictive cod-

ing of images," IEEE l'rans. Acoust. Speech, Signal Proces,_ing, vol.
ASSP 32, pp. 1213-1229, Dec. 1984.




